
945

0022-4715/02/1200-0945/0 © 2002 Plenum Publishing Corporation

Journal of Statistical Physics, Vol. 109, Nos. 5/6, December 2002 (© 2002)

Arctic Octahedron in Three-Dimensional Rhombus
Tilings and Related Integer Solid Partitions

M. Widom,1 R. Mosseri,2 N. Destainville,3 and F. Bailly4

1 Carnegie Mellon University, Department of Physics, Pittsburgh, Pennsylvania 15213.
2 Groupe de Physique des Solides, Universités Paris 6 et 7, 2 place Jussieu, 75251 Paris Cedex

05, France.
3 Laboratoire de Physique Quantique, UMR CNRS-UPS 5626, Université Paul Sabatier,

31062 Toulouse Cedex 04, France; e-mail: Nicolas.Destainville@irsamc.ups-tlse.fr
4 Laboratoire de Physique du Solide-CNRS, 92195 Meudon Cedex, France.

Received January 18, 2002; accepted July 9, 2002

Three-dimensional integer partitions provide a convenient representation of
codimension-one three-dimensional random rhombus tilings. Calculating the
entropy for such a model is a notoriously difficult problem. We apply transition
matrix Monte Carlo simulations to evaluate their entropy with high precision.
We consider both free- and fixed-boundary tilings. Our results suggest that the
ratio of free- and fixed-boundary entropies is sfree/sfixed=3/2, and can be
interpreted as the ratio of the volumes of two simple, nested, polyhedra. This
finding supports a conjecture by Linde, Moore, and Nordahl concerning the
‘‘arctic octahedron phenomenon’’ in three-dimensional random tilings.
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1. INTRODUCTION

Since the discovery of quasicrystals in 1984, (1) quasiperiodic tilings (such
as Penrose tilings) and random rhombus tilings (2, 3) have been extensively
studied as paradigms of quasicrystal structure. Quasicrystals are metallic
alloys exhibiting exotic symmetries that are forbidden by usual crystallo-
graphic rules: octagonal, decagonal, dodecagonal or icosahedral symme-
tries. Nonetheless, the existence of sharp Bragg peaks in their diffraction
patterns demonstrates a long-range translational and orientational order.



As compared to perfect quasiperiodic tilings, specific degrees of freedom
called ‘‘phason flips’’ are active in random tilings. Despite their random
character, the latter still display the required long-range quasiperiodic
structure.

When tiles are appropriately decorated with atoms, random tilings
become excellent candidates for modeling real quasicrystalline materials. (4)

Therefore the statistical mechanics of random tilings is of fundamental
interest for quasicrystal science. In particular, the configurational entropy of
their phason fluctuations contributes to the free energy of quasicrystal, and
might be a key ingredient in order to understand quasicrystal stability. (5)

In parallel, random tilings have become an active field of research in
discrete mathematics and computer science (see refs. 6 and 7 for instance),
and many challenging questions remain open for investigation in this field.

The relation between random tilings and integer partitions provides an
important tool for the calculation of random tilings entropy. (8–12) Integer
partitions are arrays of integers, together with suitable inequalities between
these integers. One-to-one correspondences can be established between
integer partitions and tilings of rhombi filling specified polyhedra.
However, it seems that such strictly controlled ‘‘fixed’’ boundary condi-
tions inflict a non-trivial macroscopic effect on random tilings, (8, 13) even in
the thermodynamic limit, lowering the entropy per tile below the entropy
with free or periodic boundary conditions. This effect a priori makes diffi-
cult a calculation of free-boundary entropies via the partition method.

This boundary sensitivity is well described, for the simple case of
hexagonal tilings, (6, 14) in terms of a spectacular effect known as the ‘‘arctic
circle phenomenon’’: the constraint imposed by the boundary effectively
freezes macroscopic regions near the boundary, where the tiling is periodic
and has a vanishing entropy density. Outside these ‘‘frozen’’ regions the
entropy density is finite and we call the tiling ‘‘unfrozen.’’ The boundary of
the unfrozen region appears to be a perfect circle inscribed in the hexagonal
boundary. The entropy density varies smoothly within the unfrozen region,
reaching a maximum equal to the free boundary entropy density at the
center.

This quantitative result has never been generalized to higher dimension
or codimension tilings, because its generalization requires the knowledge of
the free boundary entropy if one wants to use the same proof as in the
hexagonal case. However, thanks to numerical simulations, it has recently
been conjectured by Linde et al. (15) that in dimensions higher than 2, the
corresponding arctic region should be a polytope itself, with flat bound-
aries. It was further conjectured (by Destainville and Mosseri (16) and inde-
pendently by Propp (17)) that in this case the entropy density should be
spatially uniform and maximal in the unfrozen region. These conjectures
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renew the interest for the partition method since the relation between both
entropies becomes amazingly simple in this case.

On the other hand, except an early Ansatz (9) and some exact numerical
results for small tilings (11) (up to about 300 tiles), almost nothing is known
about the entropy of codimension-one tilings of dimension larger than 2.
Note also that some numerical Monte Carlo simulations provided an
estimate of the entropy of (codimension 3) 3-dimensional random tilings
with icosahedral symmetry. (18)

The present paper is devoted to a numerical investigation of codimen-
sion-one three-dimensional tilings. Thanks to a powerful transition matrix
Monte Carlo algorithm, we achieve precise estimates of both fixed- and
free-boundary entropies. The latter is calculated via a modified partition
method, which produces tilings with fixed boundaries that do not impose
any strain to the tilings, thus generalizing a former two-dimensional
approach. (14) Comparing both entropies, we support the above conjecture
with good confidence.

The paper is organized as follows: Section 2 reviews the relation
between random tilings and integer partitions, introduces the different
boundary conditions considered in this paper, and describes the arctic region
phenomenon conjecture. Section 3 describes our Monte Carlo method and
our numerical results. Discussions and conclusions are displayed in the last
section.

2. PARTITIONS, TILINGS, AND BOUNDARY CONDITIONS

2.1. Generalities

In this paper we consider three-dimensional tilings of rhombohedra
which tile a region of Euclidean space without gaps or overlaps. A stan-
dard method (2, 19) to generate tilings of rhombohedra (or of rhombi in two
dimensions) consists of selecting sites and tiles in a D-dimensional cubic
lattice, then projecting them into a d-dimensional subspace with D > d. The
difference D−d is called the codimension of the tilings. The class of sym-
metry of a tiling is determined by both its dimension and its codimension
and we denote tilings with such a symmetry by DQ d tilings. We consider
in this paper codimension-one, three-dimensional random tilings (i.e., D=4
and d=3). These 4Q 3 tilings are composed of four different rhombo-
hedra. All rhombohedra have identical shapes but they occur in four pos-
sible different orientations. Each rhombohedron is the projections of one of
the four different three-dimensional faces of a four-dimensional hypercube.
The interested reader can refer to ref. 11 for a review on codimension-one
tilings.
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The correspondence between codimension-one tilings and solid parti-
tions, a reformulation of the cut-and-project method, is analyzed in detail
in ref. 11, and generalized to higher codimensions in ref. 12.

We now define three-dimensional solid partitions. Consider a three-
dimensional array of sides k1×k2×k3. Fix an integer p > 0, called the
height of the partition problem. Put non-negative integers in the array, no
larger than p, with the constraint that these integers decrease in each of the
three directions of space. More precisely, if i1, i2 and i3 are indices attached
to the boxes of the array (1 [ ia [ ka), we denote by ni1, i2, i3 the integral
variables attached to these boxes (the parts). Our partition array contains
Np=k1k2k3 parts. The partition constraint is

0 [ ni1, i2, i3 [ p (1)

and

ni1, i2, i3 \ nj1, j2, j3 (2)

whenever i1 [ j1, i2 [ j2 and i3 [ j3.
Figure 1 displays the tiling/partition correspondence in two dimen-

sions for easy visualization. Plane partitions are k×l arrays of non-nega-
tive integers smaller than a height p and decreasing in each row and column
(left). This correspondence is constructed as follows: stack 3-dimensional
cubes above the boxes of the partition so that the height of each stack
(center) equals the value of the corresponding partition box (left). Then
project this stacking along the (1,1,1) direction of the cubic lattice. Faces
of the cubes project to rhombi. The so-obtained rhombus tiling fills a
hexagon of sides k, l and p (center).
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Fig. 1. One-to-one correspondence between plane partitions (left), hexagonal tilings (center),
and de Bruijn lines (right) in two dimensions; (9, 11) De Bruijn lines of two families (among
three) have been represented.
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Following the same construction in three dimensions, four-dimen-
sional hypercubes are stacked above the three-dimensional partition array,
with the heights of the stacks equal to the corresponding parts. Then
project into three dimensions along the (1,1,1,1) direction of the hyper-
cubic lattice. Like in the hexagonal case, the so-obtained tilings fill a
polyhedron, a ‘‘rhombic dodecahedron’’ (RD) of integral sides k1, k2, k3
and p (see the outer frame in Fig. 3). The total number of tiles,

Nt=k1k2k3+k1k2 p+k1k3 p+k2k3 p. (3)

We call tilings with rhombic dodecahedron boundaries ‘‘RDB-tilings’’ and
denote their configurational entropy per tile (20) by sfixed.

The source of configurational entropy can be easily understood in
either the tiling or the partition representation. Figure 2 illustrates the basic
‘‘tile flip’’ in both the 3Q 2 and the 4Q 3 tilings. In each case interior tiles
are rearranged without disturbing the surface of a region. In terms of
the equivalent partition, the height of one partition element increases or
decreases by one unit. This elementary local move is ergodic, and every
legal tiling can be reached by a succession of such flips.

An alternative description of the same tilings and partitions is in terms
of de Bruijn lines (21) and membranes. Figure 1 (right) shows the de Bruijn
lines of the tiling (center). These are formed by connecting centers of par-
allel edges on every rhombus. There are three families of de Bruijn lines,
each family with an average orientation perpendicular to the tile edges.
Although de Bruijn lines within a family never cross, de Bruijn line cros-
sings among different families occur at the center of each rhombus. For
three-dimensional tilings, we have instead de Bruijn membranes. Elemen-
tary flips such as those illustrated in Fig. 2 bend the membrane locally, and
membrane fluctuations become the source of configurational entropy.

Finally, we note that every tiling can be represented as a d-dimensional
directed hypersurface embedded in a D-dimensional space. Beginning with
d=2 tilings, this hypersurface consists of the faces of the stacking of cubes

0
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0

1

(a) (b)

Fig. 2. Examples of single vertex flips: (a) rotation of 3 rhombi inside hexagon in 3Q 2
tiling; (b) rotation of 4 rhombohedra inside rhombic dodecahedron in 4Q 3 tiling. Each rota-
tion increases or decreases partition height by 1 unit, as shown.
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visible from the (1,1,1) direction (Fig. 1 (center)). When projected along
the same direction on the ‘‘real’’ space E, it becomes a plane tiling. It is
‘‘directed’’ because no tile overlaps occur during the projection. The same
relationship holds for d=3 tilings: the directed hypersurface consists of the
three-dimensional faces of the stacking of hypercubes viewed along the
(1,1,1,1) direction. Since the hypersurface is directed, it can be seen as a
single-valued, continuous, piecewise linear function j from the real space
E=R3 to R. The value of f is just the height along the (1,1,1,1) axis. In
the thermodynamic limit, these piecewise linear functions j can be coarse-
grained to obtain smooth functions f: R3Q R which only contain large-
scale fluctuations of the original corrugated membranes. (3, 14)

2.2. Boundary Conditions

Polyhedral boundary conditions, such as the rhombic dodecahedron
bounding RDB tilings, have macroscopic effects on random tilings. In
the ‘‘thermodynamic limit’’ of large system size, the statistic ensemble is
dominated by tilings which are fully random only inside a finite fraction
of the full volume and are frozen in macroscopic domains. By frozen, we
mean they exhibit simple periodic tilings in these domains with a vanishing
contribution to the entropy. In two dimensions, this is known as the ‘‘arctic
circle phenomenon’’, as described in introduction. (6, 14)

Such boundary conditions are not very physical. Indeed, even if one
can imagine situations where the quasicrystal is constrained by a flat inter-
face (e.g., growth experiments on a crystalline substrate), the previous
considerations rely on the assumption that, in the physical quasicrystalline
material, the tiles are elementary unbreakable structures. However, the
system could possibly lower its free energy by breaking some tiles (a line
of tiles in 2D or a surface in 3D), in order to adapt to the constraint, and
thereby free the remainder the tiling from the constraint. For sufficiently
large tilings a net lowering of free energy results. For example, the energy
cost of a broken line of tiles grows linearly with the length of this line,
whereas the free energy difference between a constrained tiling and a free
one grows like the number of tiles and therefore like length squared (in two
dimensions). In the thermodynamic limit, even if it costs a great amount of
energy to break a tile, the system will eventually prefer to pay this cost.
Therefore, the ‘‘true’’ thermodynamic entropy density is the free-boundary
entropy. (22)

Consequently, it is desirable to relate fixed boundary condition entro-
pies to the more physical free boundary ones. Fortunately, there exists an
exact formal relation between these entropies. (14) A quantitative relation
has even been calculated in the hexagonal case, (6, 14) but it has not been
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possible (so far) to extend quantitative relationships to more general classes
of tilings. However, a conjecture by Linde, Moore and Nordahl (15) has
recently brought some new hope (see Section 2.3).

To exploit the calculational advantages of a partition representation,
while achieving the physical free-boundary entropy in the thermodynamic
limit, we adapt the partition method so that the corresponding tilings
exhibit no frozen regions. The new boundary, even though fixed, has
no macroscopic effect on tiling entropy in the thermodynamic limit. The
tilings become homogeneous, displaying the free-boundary entropy density
throughout.

The idea is to consider tilings (we focus on ‘‘diagonal’’ tilings with
k1=k2=k3=p) that fill a regular octahedron O instead of the rhombic
dodecahedron RD. Eight vertices of the RD must be truncated to produce
the O. We call tilings with octahedron boundaries OB-tilings. Such an
octahedron is displayed in Fig. 3. It is inscribed in an RD and has puckered
boundaries instead of flat ones. Despite this puckering, the boundaries are
effectively flat in the thermodynamic limit. The same kind of idea is devel-
oped in ref. 14 in the hexagonal case where a puckered two-dimensional
hexagonal boundary is introduced so that the tilings are homogeneous and

Fig. 3. The puckered octahedral boundary conditions (k1=k2=k3=p). The octahedron O
is inscribed in the rhombic dodecahedron RD of side p coming from the solid partition
method. The volume ratio |RD|/|O|=3/2.
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exhibit no frozen regions. It is demonstrated (and numerically checked)
that the random tilings filling this puckered hexagon display a free-bound-
ary entropy in the thermodynamic limit.

We now explain why OB-tilings have a free boundary entropy even
though their boundary is fixed. The tiling entropy is contained in fluc-
tuations of the associated hypersurface j. Small-scale fluctuations are
integrated in an entropy functional s[f] which takes into account the total
number of possible piecewise linear hypersurfaces j that are close to the
smooth one f (see ref. 14 for discussion). Functions maximizing s[f]
represent the dominant macroscopic states of the system. Note that s[f]
can be written as a functional of the gradients of f, known as the phason
gradient or phason strain in the quasicrystal community. And s[f] is
maximum and equal to the free-boundary entropy sfree when this gradient
vanishes everywhere.

Fixed boundaries on tilings translate into fixed boundary conditions
for the functions f. Therefore s[f] must be maximized on a restricted set
of functions, F. For rhombic dodecahedral boundaries on RDB tilings, the
boundaries of functions f ¥ F are non-flat polyhedra, and the phason gra-
dient cannot vanish everywhere. Therefore their entropy density sfixed is
bounded below by sfree. For octahedral boundaries on OB tilings, the
functions f are also constrained by a fixed boundary condition. But in this
case, the boundary is flat and strain-free. It does not impose any phason
gradient on the functions f. The phason gradient can vanish everywhere
and the maximum of s[f] equals sfree.

Figure 4 illustrates changes in the partition array boundary conditions
needed to achieve OB tilings instead of RDB tilings. The partition array is
no longer a cube, but two opposite pyramidal corners have been truncated,
leaving a slab ofD3d symmetry. This slab containsNp=p3−(p−1) p(p+1)/3
parts.

We indicate minimal and maximal values of the parts: the three faces
in the topmost figure bear minimal values of their adjacent boxes, whereas
the three hidden faces bear maximal values. These values are visible on the
bottom in the view in the bottommost figure. Individual parts are bounded
by integers depending on the position of the part in the array. Since interior
parts are bounded by their neighbors, it is sufficient to impose these
bounds on surface parts, as indicated in Fig. 4. The lower bounds range
from 0 to p−1, with constant values on lines parallel to diagonal of cube
faces. The upper bounds are read on the opposite faces, and range from 1
to p.

Using the methods discussed in Section 2.1, such partitions generate
tilings filling the octahedron O. For an original partition cube of sides
k1=k2=k3=p, the full RD contains Nt=4p3 tiles (see Eq. (3)). The
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Fig. 4. Boundary conditions for the partition problem associated with the strain-free tiling
problem with boundary conditions of Fig. 3. Two views of the truncated cube (of side p) are
provided. The marked vertex is the same in both views.

octahedron O contains Nt=4p3−4(p−1) p(p+1)/3 tiles (these are the
4p3 tiles in the RD minus the tiles in the truncated corners). These parti-
tions are used in Section 3 to estimate numerically sfree.

2.3. Arctic Octahedron Conjecture (Linde, Moore, and Nordahl)

The relation between free and fixed boundary entropies in not known
in general, because the generalization of the proof of the hexagonal case
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requires the knowledge of the free boundary entropy. In two dimensions,
this relation is non-trivial because the unique function fmax maximizing
s[f] has a complex expression, (6, 14) leading to the arctic circle phenome-
non: the statistically dominating tilings are frozen (and periodic) outside a
circle inscribed in the boundary hexagon.

In three dimensions, Linde, Moore, and Nordahl have recently explored
numerically the typical shape of a RDB-tiling and have conjectured (15) that
the two-dimensional circle then becomes not a sphere but a regular
octahedron, inscribed in RD like O in Fig. 3. More precisely, the unfrozen
region is not exactly O but tends towards O at the large size limit.

This conjecture has a crucial consequence: (16) the statistical ensemble
of RDB-tilings is dominated by tilings periodic outside O and random
inside O, equivalently OB-tilings like in the previous section completed by
eight periodically tiled pyramids to fill RD. Note that James Propp (17) has
also conjectured independently of the present work that RDB-tilings should
be homogeneous inside O. Taking into account the tiles in the frozen
regions to calculate an entropy per tile, one finally gets

sfixed=
NO
NRD
sfree=

2
3
sfree, (4)

since the ratio of the numbers of tiles in RD and O is 3/2. The next section
is dedicated to the calculation of this ratio viaMonte Carlo simulations.

3. MONTE CARLO

Conventional Monte Carlo simulations using Metropolis sampling (24)

are useful for generating typical tiling configurations. They can reveal
temperature driven phase transitions (25) and yield quantitative evaluations
of phason elastic constants from fluctuations. Evaluation of entropy by
Monte Carlo simulation demands specialized techniques. Advanced
methods using specialized dynamics based on entropic sampling (26) and
transfer matrices (27, 28) yield reasonably accurate free energies and absolute
entropies.

We employ a variant of the transition matrix method (29, 30) that couples
a conventional Metropolis Monte Carlo simulation with a novel data
collection and analysis scheme to construct a numerical approximation to
the transition matrix, described below in Section 3.1. The density of states is
an eigenvector of the exact transition matrix, and the sum of the density of
states yields the total number of states. This method yields highly accurate
absolute entropies with impressive efficiency.
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3.1. Transition Matrix

For any legal partition P={nijk}, we define its ‘‘energy’’ as its total
height

E(P)=C
ijk
nijk, (5)

and incorporate the constraint of legality by defining E=. for any parti-
tion P that violates the ordering conditions inside the partition or at the
boundaries. Under single vertex flip dynamics (see Fig. 2) a single partition
element increases or decreases by one unit resulting in an energy change
DE=±1. The ground state of this model is the lowest height legal parti-
tion. For the boundary conditions employed here, the ground state is
unique and we denote its energy as Emin. There is also a unique maximum
energy state of energy Emax.

In a Metropolis Monte Carlo simulation of the partition, a randomly
chosen partition element is randomly increased or decreased by one. The
change is accepted if it lowers the energy (i.e., we attempted to decrease it,
and the result is a legal partition). If the change raises the energy, it is
accepted with probability exp(−DE/T). Note that illegal partitions are
never accepted. Low temperatures bias the partitions towards low heights,
while high temperatures remove any bias according to height. As T
becomes large, the Metropolis simulation faithfully reproduces the random
tiling ensemble in which all configurations have equal weight. If we choose,
we may take negative values of temperature T. Large negative temperatures
again reproduce the random tiling ensemble, while small negative tempera-
tures favor partitions of maximal height.

For a given partition P, a number of partitions n±(P) can be reached
by single upwards or downwards steps. Additionally, a certain number
n0(P) of steps are forbidden due to the partition constraints. The sum
rule

n−(P)+n0(P)+n+(P)=2Np (6)

holds for every partition P. This value is twice the number of parts because
each part can be raised or lowered. For any given partition P, the calcula-
tion of n±, 0 is easy (though not fast) and exact.

We define the transition matrix w±, 0(E) as a matrix with
Emax−Emin+1 rows (one for each allowed energy E) and three columns
(labeled ‘‘+’’ for upwards transitions, 0 for forbidden transitions and
‘‘ − ’’ for downwards transitions. Alternatively, we can think of these three

Arctic Octahedron in Three-Dimensional Rhombus Tilings 955



columns as the diagonal and two off-diagonals of a square matrix w(E, EŒ)
of dimension Emax−Emin+1. Formally, we define

w±, 0(E) —
1

W(E)
C
P(E)
n±, 0(P)/2Np (7)

where the sum is over all partitions of energy E and the normalization
W(E) is the total number of partitions with energy E. In general the set
P(E) and the value W(E) are not known, preventing us from actually
calculating the transition matrix. However, we may calculate the matrix
numerically with high precision by averaging n±, 0(P)/2Np over those par-
titions P occurring during a Monte Carlo simulation. By virtue of Eq. (6),
the matrix elements obey the sum rule

w−(E)+w0(E)+w+(E)=1 (8)

for any energy E, so each row of the transition matrix can be normalized
independently without knowledge ofW(E).

The transition matrix can be interpreted in terms of the rates at which
Monte Carlo moves would be accepted in a hypothetical simulation at
infinite temperature (even if our actual simulation is performed at finite
temperature). In a single Monte Carlo step, the probability for upwards
or downwards transitions at infinite temperature is n±(P)/2Np, and the
probability a move will be rejected is n0(P)/2Np. We can predict finite
temperature transition probabilities by multiplying w±, 0(E) with appro-
priate Boltzmann factors, and in fact these agree well with actual observed
acceptance rates.

To extract the density of states and the entropy, consider the infinite
temperature detailed balance condition. At infinite temperature the prob-
ability a randomly chosen partition has energy E isW(E)/Z, where

Z=C
E
W(E) (9)

is the total number of legal partitions (the ‘‘partition function’’). Multiply-
ing the probability W(E)/Z by the acceptance rate of upwards transitions
w+(E) yields the total forwards transition rate. The backwards rate is
obtained in similar fashion. Detailed balance requires that the total rate of
forward transitions from energy E to energy E+1 must equal the total rate
of backwards transitions, hence

w+(E) W(E)/Z=w−(E+1) W(E+1)/Z. (10)
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It is useful to rearrange the detailed balance equation (10) to find

W(E+1)=
w−(E+1)
w+(E)

W(E) (11)

which allows us to iteratively extract the full density of states function
W(E) using uniqueness of the ground state, W(Emin)=1. Finally, the total
entropy

S=ln Z, (12)

and the entropy density s=S/Nt.
Note that these infinite temperature transition rates may be calculated

from finite temperature Metropolis simulations. Indeed, certain low
energies E may occur very rarely in high temperature simulations so we
must perform low temperature simulations to generate partitions with
energy E, from which the infinite temperature transition rates may be cal-
culated. By sweeping over a range of temperatures we obtain accurate
values of w±(E) for all energies. Then, we use the infinite temperature
detailed balance condition (10) to extract the density of states even though
our simulation is performed entirely at finite temperatures.

The accuracy of our result is controlled by the accuracy with which we
determine w±(E). For each partition, the transition numbers n±, 0(P) are
calculated exactly and added into the row of the transition matrix with
energy E(P). Since there may be many partitions with the same energy E,
each having different transition numbers, the accuracy with which a row of
the transition matrix is determined is limited by our ability to generate a
representative sample of partitions. We store the matrix as the integer
valued sum of the integers n±, 0(P), and impose the normalization (8) after
data collection is complete. Because the values of n±, 0(P) can be quite
large, and we visit each energy a very large number of times, ordinary 4
byte integers can not hold the data. We implemented special procedures to
handle storage and algebraic manipulations of large integers.

3.2. Numerical Data

Fixed boundary partitions are initialized at zero height (and thus
E=Emin=0). Their maximum energy Emax=k1k2k3 p. We accumulate data
in the transition matrix through four sweeps over temperature: from Tmin to
Tmax during which time the mean energy grows from Emin to about Emax/2;
from −Tmax to −Tmin during which time the mean energy grows from
Emax/2 to Emax; from −Tmin back to −Tmax; from Tmax back down to Tmin.
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Each sweep visits 201 temperatures in a geometric sequence from the initial
to the final temperature. Free boundary tilings are initialized with a flat
partition at energy close to (Emin+Emax)/2. We again perform four sweeps:
from Tmax down to Tmin; from Tmin back up to Tmax; from −Tmax to −Tmin;
from −Tmin back to −Tmax.

For both fixed and free boundary tilings, symmetries of the model
dictate that the density of states is symmetric about the midpoint energy
Emid=(Emin+Emax)/2. The density of states W(E) has a strong maximum
at the midpoint. By including both positive and negative temperature
sweeps we sample both low and high energy states. By reversing our sweeps
we mitigate possible systematic sampling errors associated with the direc-
tion of the sweep.

At each temperature during a sweep, we accumulate data on NMC
sample configurations. For a given configuration (partition P), the time
required to calculate n±, 0(P) is proportional to the partition size Np, and
hence to the time required to attempt Np flips. Because the data accumula-
tion is time consuming, we can perform many single vertex flips between
sample without significantly slowing down the simulation. We take
NFL=Np/5 single vertex flips, which yields rough equality between time
spent flipping and collecting data. Prior to data collection at any tempera-
ture, we anneal at fixed temperature for NMC×NFL/100 steps. The total
number of attempted flips in an NMC=106 run on a 10×10×10 partition
is thus in excess of 4×201×106×103/5=1.6×1011 attempted flips. A run
of this length takes 5 days on a 1.7 GHz Pentium 4 processor.

This protocol was chosen to ensure approximately uniform coverage
of energies from Emin to Emax. The energy distribution of partitions visited
at each temperature overlaps strongly the energy distribution of partitions
visited at the previous and following temperatures. The value of Tmin is
chosen sufficiently low to guarantee some coverage of the extreme energy
states. Because there are few states at the energy extremes, there is an
entropic barrier to reaching these extremes. This causes a spike in the
coverage close to the extreme energies that cannot be avoided using
Metropolis sampling. The value of Tmax is chosen sufficiently high that the
midpoint energy is a local maximum in the coverage. Figure 5 plots the
number of partitions sampled as a function of energy during the longest
runs (length 106) for the p=4 partition. Note that the number of hits
exceeds 106 uniformly for each energy in the range 0 [ E [ 256.

The density of states, W(E) shown in Fig. 5 (center), is nearly a
Gaussian.W(E) reaches a peak value of 1.7×1015 states at energy E=128,
and has a half width at half maximum of DE=20. As the system size
grows this width grows more slowly than the number of tiles, so the density
of states asymptotically approaches a delta function. Although we sampled
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Fig. 5. Simulation data for p=4 fixed boundary tiling. Top panel: Number of configura-
tions sampled (units of 106). Center panel: Density of states W(E) (units of 1014 per energy).
Bottom panel: Microcanonical entropy S(E)=lnW(E).

a total of 8×106 configurations at E=128, this represents a fraction of
only about 4.7×10−9 of the total number that exist at this energy.

The microcanonical entropy, defined as logW(E), is plotted in the
lower panel of Fig. 5. This plot reveals the expected symmetry around Emid.
The degree to which symmetry is broken can be used as an indicator of
errors accumulated during our iterative calculation (11), because sampling
errors at low and high energies need not cancel. By inspection it can be
seen that this error is quite low, since the entropy returns essentially to zero
at high energy.

Table I shows the convergence of entropy data as run length grows.
We show the convergence only for the largest system size, which represents
our worst case. The residual R=logW(Emax) measures the failure of the
calculated microcanonical entropy to return to zero at high energy. It
reflects the cumulative error in W(E), and thus, assuming statistical inde-
pendence of the errors at each energy, it provides an upper bound on the
error in W(E) for any energy. Converting the error in W(E) into an error
in the entropy, we estimate an uncertainty

|Ds| % R/Nt. (13)

Table I. Convergence of p=10 Entropy Data for Increasing Run Length.

The Residual R=log W(Emax) Measures the Cumulative Error in W(E)

NMC 103 104 105 106

sfixed 0.147827 0.147385 0.147400 0.147349
Rfixed 3.474 0.180 0.429 0.002
sfree 0.197516 0.197300 0.197234 0.197273
Rfree 1.214 0.143 −0.202 −0.036

Arctic Octahedron in Three-Dimensional Rhombus Tilings 959



Our numerical simulation results in Table I, and also simulations of smaller
systems for which the entropy is known exactly, are in good numerical
agreement with this estimate.

Table II summarizes our data for all system sizes studied. We report
the entropy resulting from the run of length NMC=106, and use the differ-
ence between that run and the length NMC=105 run for the quoted
uncertainty.

To extrapolate our data to infinity, we fit to functional forms. For the
fixed boundary entropy, we expect finite-size corrections of order log(p)/p
and 1/p because of boundary effects. Indeed, these two terms are the first
correction terms in the exactly solvable one- and two-dimensional random
tilings. Note that they have the same order of magnitude for the values of p
considered here. This logarithmic form fits the data much better than a
simple correction of order 1/p. For fixed boundary tilings the data fit well
to

sfixed(p) 4 0.145−0.0049
log(p)
p
+
0.034
p
, (14)

from which we conclude that sfixed=0.145(3). The value is obtained from a
fit excluding the data point with p=1, while the uncertainty estimate
comes from excluding instead the data point with p=10. This value is very
close to a conjectured limit (9) of 0.139, but given our small uncertainty, we
believe the conjectured value is not exact.

Table II. Size-Dependent Entropies. Values in Parentheses Are

Uncertainties in Final Digit. Values Without Uncertainties Are Exact

p sfree sfixed sfree/sfixed

1 0.1732868 0.1732868 1.000
2 0.1732868 0.1601239 1.080
3 0.17947(2) 0.1545769 1.161
4 0.18455(6) 0.1517949 1.216
5 0.18829(3) 0.15017(2) 1.254
6 0.19108(4) 0.14918(6) 1.281
7 0.19320(4) 0.14848(1) 1.301
8 0.19486(2) 0.14780(1) 1.318
9 0.19618(1) 0.14762(2) 1.329

10 0.19727(4) 0.14735(5) 1.339

. 0.214(2) 0.145(3) 1.48(3)
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For the free boundary data we find

sfree(p) 4 0.214−0.052
log(p)
p
−
0.046
p
, (15)

from which we conclude that sfree=0.214(2). As in the fixed boundary
case, the logarithmic finite size correction fits the data better than a simple
correction of order 1/p. Should the octahedral fixed boundary have a
trivial short-range effect, it would create only a 1/p leading term (from
surface vs bulk contributions), as indeed occurs in the corresponding two-
dimensional hexagonal case (14) (see Section 2.2). Therefore, it appears that
the strain-free octahedral boundary has a nontrivial long-range effect on
the local entropy density, presumably by limiting the fluctations of the
height function within a ‘‘penetration depth’’ that depends on the side
length p. A penetration depth growing like log(p) is consistent with our
leading finite-size correction.

For the ratio, we fit to

sfree(p)
sfixed(p)

4 1.48−0.37
log(p)
p
−
0.54
p
, (16)

and we conclude the ratio sfree/sfixed=1.48(3). This value equals 3/2
within our uncertainty.

It would be desirable to achieve higher precision in this ratio in the
future. At present, we are limited to system sizes of p=10 or less because
for larger systems the density of states W(E) exceeds 10308, the limiting
floating point number on our Pentium 4 processor. Either specialized
floating point arithmetic or a 64-bit processor will be required to treat
systems of size p=11 and above.

4. DISCUSSION

Returning to the arctic octahedron conjecture, we recall (see Eq. (4))
we expected a ratio sfree/sfixed=3/2. In fact, with few extra hypotheses, we
now demonstrate that our numerical results provide a strong support to the
arctic octahedron conjecture. Suppose that, as in the two-dimensional
case, (31) the function fmax maximizing the entropy functional s[f] subject to
a given boundary condition is unique. (14) If f0 is the piecewise linear func-
tion which vanishes identically in the central octahedral region O and has
maximum strain (and 0 entropy) in the eight pyramidal regions comprising
RD−O, then s[f0]=2/3sfree, and thus s[f0]=sfixed. Therefore f0=fmax,
by uniqueness of fmax.
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As a conclusion, if sfree/sfixed=3/2 and fmax is unique, then the arctic
octahedron conjecture is true. Note that this conjecture can be generalized
to higher dimensions, making in principle possible a calculation of the
above ratio for any dimension, at least as far as codimension one problems
are concerned.

In terms of de Bruijn membranes, the above result means that all de
Bruijn membranes are straight (or flat), at least at large scales. Indeed if de
Bruijn membranes are flat in a RD-tiling, the 4 de Bruijn families intersect
in the central octahedron O, but only intersect 3 by 3 in the 8 pyramidal
corners, leading to a frozen tiling in these 8 regions and a strain-free tiling
in O.

By comparison, one-dimensional de Bruijn lines in two dimensional
hexagonal tilings are not straight since that would lead to a hexagonal
central arctic region with uniform entropy density. If s3Q 2free denotes the free
boundary entropy of hexagonal tilings, one would get a fixed boundary
diagonal entropy per tile of 3s3Q 2free /4=0.242 instead of 0.261 (using similar
arguments as above). Fluctuations of the de Bruijn lines raise the entropy
from 0.242 to 0.261. Entropic repulsion of the lines causes them to bend.

In contrast, the repulsion between de Bruijn membranes is sufficiently
weak that they are not forced away from their flat configuration. This is
possibly related to the fact that the fluctuation of a free 2-dimensional
directed membrane in 3-dimensional space is of order `log(L) where L is
its linear size, (3) whereas the fluctuation of a free 1-dimensional directed
polymer in 2-dimensional space is larger and of order `L. Therefore it is
natural to suppose that the flatness of the arctic region will persist in
dimensions higher than 3 where the fluctuations are even smaller, since
they are bounded. (3)

Our result emphasizes important dimensional dependence of the tran-
sition between the frozen and unfrozen regions. Indeed, in 2 dimensions,
the transition is continuous, since the entropy density is 0 by the arctic
circle and then continuously varies to reach its maximum value near the
center of the hexagon, with a non-zero gradient everywhere except near the
center. By contrast, the situation seems to be radically new and different in
3 dimensions, since the entropy density appears to be constant in the arctic
octahedron O, with a vanishing gradient everywhere and a discontinuous
transition at the boundary of O.

This result (as well as its possible generalization to higher dimensions)
is a strong support in favor of the partition method, of which it was for-
merly believed that it could not easily provide relevant results about free
boundary entropies. Indeed, provided the arctic region is polyhedral and its
boundary is strain-free, the ratio of both entropies is nothing but a ratio of
volumes of suitable polytopes. The latter two conditions should be fulfilled
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as soon as the entropic repulsion between de Bruijn membranes is suffi-
ciently weak, that is as soon as the spatial dimension is 3 or greater.

To finish with, we mention that this transition matrix Monte Carlo
technique can easily be adapted to the numerical calculation of the entropy
of two-dimensional rhombus tilings. Indeed, the structure of the configu-
ration space of such tiling problems in terms of flips has been characterized
in ref. 12. Note however that no such simple result as the ‘‘arctic octa-
hedron phenomenon’’ is expected in these two-dimensional classes of
tilings, but the calculation of their configurational entropy is a challenge in
itself. This work is in progress.
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